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Abstract

Recent advances in video generation have spurred the001
development of world models capable of simulating 3D-002
consistent environments and interactions with static objects.003
However, a significant limitation remains in their ability to004
model dynamic, reactive agents that can intelligently influ-005
ence and interact with the world. To address this gap, we006
introduce COMBAT, a real-time, action-controlled world007
model trained on the complex 1v1 fighting game Tekken 3.008
Our work demonstrates that diffusion models can success-009
fully simulate a dynamic opponent that reacts to player ac-010
tions, learning its behavior implicitly.011

Our approach utilizes a 1.2 billion parameter Diffusion012
Transformer, conditioned on latent representations from a013
deep compression autoencoder. We employ state-of-the-art014
techniques, including causal distillation and diffusion forc-015
ing, to achieve real-time inference. Crucially, we observe016
the emergence of sophisticated agent behavior by training017
the model solely on single-player inputs, without any ex-018
plicit supervision for the opponent’s policy. Unlike tradi-019
tional imitation learning methods, which require complete020
action labels, COMBAT learns effectively from partially ob-021
served data to generate responsive behaviors for a control-022
lable Player 1. We present an extensive study and introduce023
novel evaluation methods to benchmark this emergent agent024
behavior, establishing a strong foundation for training in-025
teractive agents within diffusion-based world models.026

1. Introduction027

As the fidelity of video generation methods improves with028
increased understanding of real-world phenomena, inter-029
active world models trained on gameplay and real-world030
data have emerged [4, 5, 23]. The focus of these works031
remains on generating spatially and temporally consistent032
world simulations. Yet, in real-world scenarios, the most033
unpredictable components are reactive agents that can ob-034
serve, plan, and influence their environment, such as in au-035
tonomous driving, navigation, and combat scenarios.036

Recent works demonstrate that autoregressive diffusion037

models are effective at world simulation. Several advances 038
make these models real-time through distribution match- 039
ing distillation (DMD) [26–28] and diffusion forcing [14] 040
to overcome autoregressive drift. These engineering ad- 041
vances have enabled neural game simulations for first- 042
person games such as Minecraft and CS:GO [17], show- 043
casing excellent causal understanding of actions and their 044
effects on generated frames. 045

However, real-world and game environments also con- 046
tain rich information about how agents (humans, NPCs, and 047
autonomous systems) respond to environmental dynamics. 048
Current methods could greatly benefit from learning agent 049
behavior from this observational data, but the partial observ- 050
ability and unstructured nature poses significant challenges. 051
For example, while we might observe a pedestrian chang- 052
ing trajectory to avoid a vehicle, the exact observations and 053
decision processes of the human agent remain hidden. 054

We present COMBAT (Conditional world Model for 055
Behavioral Agent Training), an interactive world model that 056
learns underlying agent behavior and movement dynamics 057
directly from partially observed multi-agent systems. By 058
training a world model on Tekken 3 gameplay with condi- 059
tioning only on Player 1’s input, we observe emergent tac- 060
tical behavior in Player 2 without explicit behavioral super- 061
vision. We select Tekken 3 as it provides an ideal controlled 062
environment with clear visual feedback, deterministic game 063
mechanics, diverse movesets, and frame-precise timing re- 064
quirements. 065

Our approach uses a 1.2B parameter diffusion trans- 066
former trained on 1.2M frames across 1,000 gameplay 067
rounds. We first train a Deep Compression AutoEncoder 068
(DCAE) to obtain highly compressed latent representa- 069
tions, then train the world model to generate temporally 070
consistent gameplay sequences. COMBAT successfully 071
learns to control Player 1 from conditioning signals, while 072
Player 2 emerges with realistic combat behaviors including 073
blocking, counterattacking, and combo execution. Through 074
decoder distillation and CausVid DMD techniques, we 075
achieve real-time generation at interactive frame rates. 076

We introduce novel benchmarking methods to evaluate 077
emergent agent behavior, measuring behavioral diversity, 078
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Figure 1. An overview of the COMBAT world model. (Top) The model is conditioned on the current state (visual frames and poses)
and Player 1’s control inputs to autoregressively predict subsequent frames. (Bottom) Three distinct generated trajectories showcase the
model’s ability to produce plausible, strategic counter-attacks from Player 2 as an emergent response to Player 1’s actions, without direct
supervision of the opponent’s policy.

and tactical understanding. Our extensive analysis demon-079
strates that world models can serve as a new paradigm for080
learning agent behaviors from observational data, with im-081
plications for multi-agent AI systems beyond gaming.082

2. Related Work083

Our work is positioned at the intersection of generative084
world models, video diffusion architectures, and behavioral085
modeling. We review key advancements in these areas to086
contextualize our contribution.087

2.1. Video Diffusion Models088

The remarkable success of diffusion models in image syn-089
thesis [19, 20] has naturally inspired their extension to video090
generation. Early approaches adapted U-Net architectures091
from image models, achieving results in short-form video092
synthesis [3, 9]. However, the convolutional nature of U-093
Net presents challenges for video: it struggles to capture094
long-range temporal dependencies and scales poorly with095
sequence length, often leading to temporal incoherence.096

To address these limitations, Transformer-based video097
models have emerged. Following Peebles et al. [18], which098
demonstrated that Diffusion Transformers (DiT) could sur-099
pass U-Nets in image generation with superior scaling prop-100
erties, subsequent work has applied this architecture to101

video. Models such as W.A.L.T [10] and CogVideoX [25] 102
show that DiT self-attention mechanisms effectively model 103
complex spatiotemporal relationships in video data, en- 104
abling longer, more coherent sequences. Our work builds 105
on this foundation, employing a DiT backbone tailored for 106
action-conditioned dynamics in interactive environments. 107

2.2. Neural Game Engines and World Models 108

Recent advances demonstrate that generative models can 109
serve as neural game engines, replacing traditional render- 110
ing and state update logic. GameGAN, Kim et al. learns to 111
imitate 2D games from raw pixels and actions using GANs 112
with explicit memory modules [16]. More recently, diffu- 113
sion transformers have become dominant for this task. 114

Valevski et al. introduce GameNGen, a fully neural 115
DOOM engine that generates frames conditioned on past 116
frames and actions, enabling real-time simulation [23]. 117
Alonso et al.’s DIAMOND trains diffusion-based world 118
models achieving state-of-the-art RL performance while 119
producing playable Counter-Strike simulations [1]. Che 120
et al. extend this with GameGen-X, training on million- 121
clip datasets to enable long-horizon, interactive open-world 122
gameplay [6]. 123

These methods validate that neural models can learn 124
complex game dynamics from observational data. Our work 125
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adopts similar architectural foundations but introduces a126
novel objective: modeling emergent behavior of uncon-127
trolled opponents that arises solely from conditioning on128
controllable player actions.129

2.3. Multi-Modal and Behavioral World Models130

While traditional world models focus on visual prediction,131
recent work has pushed towards greater fidelity and behav-132
ioral learning. Our work adopts joint RGB-pose represen-133
tation to enforce structural consistency in character move-134
ments.135

In parallel, learning agent behavior within world models136
has predominantly followed two paths. The first is model-137
based reinforcement learning, where an agent’s policy138
is trained using a learned dynamics model and an extrin-139
sic reward signal. Works like DreamerV3 exemplify this,140
achieving mastery in diverse domains by learning behav-141
iors entirely within the latent space of a world model [11].142
The second path is imitation learning, which learns poli-143
cies from expert demonstrations. Methods like Generative144
Adversarial Imitation Learning (GAIL) require explicit145
state-action supervision for all agents to mimic expert be-146
havior [13].147

Our approach diverges from both paradigms. We demon-148
strate that complex, reactive multi-agent behaviors can149
emerge implicitly as a property of world modeling itself,150
without engineered rewards and using only partially ob-151
served data where just one agent’s actions are provided as a152
condition.153

2.4. Optimization Techniques for Interactive Gen-154
eration155

Real-time interactive generation requires addressing both156
architectural efficiency and sampling speed. Recent ad-157
vances in attention mechanisms include FlexAttention [8],158
which enables flexible attention patterns, and Longformer159
[2], which combines local sliding-window attention with160
global context. We incorporate local-global attention pat-161
terns inspired by these works to balance efficiency with tem-162
poral coverage.163

For sampling efficiency, Distribution Matching Distilla-164
tion (DMD) [26, 28] and diffusion forcing [14] have proven165
effective at reducing sampling steps while mitigating au-166
toregressive drift. These techniques enable real-time neu-167
ral simulation for complex games [5, 23]. We adapt DMD168
through CausVid distillation to achieve interactive frame169
rates while preserving behavioral quality.170

The Muon optimizer [15] introduces orthogonalization171
into momentum-based updates, improving conditioning of172
weight updates and outperforming AdamW in training173
speed benchmarks. We incorporate Muon optimization174
to enhance training efficiency of our large-scale diffusion175
transformers.176

3. Method 177

Our approach, COMBAT, learns to simulate a complex, 178
multi-agent environment by training a generative world 179
model on video observations. World models have shown 180
promise in mastering diverse domains [11] and creating in- 181
teractive environments [5, 24]. We extend this paradigm to 182
a competitive fighting game, where the model must learn 183
the opponent’s behavior without explicit action labels. 184

3.1. Problem Formulation 185

We frame our task as learning a conditional video gener- 186
ation model that implicitly captures an opponent’s policy. 187
We select the fighting game Tekken 3 as our environment 188
for three key reasons: 189

1. Bounded Temporal Dependency: The game state is 190
largely Markovian, where 191

P (st+1 | s≤t) ≈ P (st+1 | st−k:t), 192

for a small history window k, since all relevant informa- 193
tion is contained within recent frames. 194

2. Rich Action Space: Characters possess diverse 195
movesets, with over 40 unique actions and complex 196
combos, providing a challenging domain for behavior 197
modeling. 198

3. Strategic Depth: Success requires a blend of rapid re- 199
actions and long-term tactical planning. 200

Formal Problem Statement: Given a dataset of par- 201
tially observed multi-agent trajectories 202

D = {(st, a(1)t , st+1)}Tt=1, 203

where st ∈ RH×W×3 is a game frame and a
(1)
t ∈ {0, 1}8 204

is the observed multi-hot input for Player 1. The actions of 205

Player 2, a(2)t , remain unobserved. Our objective is to learn 206
a conditional world model 207

Pθ(st+1 | st−k:t, a
(1)
t−k:t) 208

that can accurately predict subsequent frames. 209

Key Innovation: Unlike traditional imitation learning 210
methods that require explicit action supervision for all 211
agents [13], COMBAT is trained without Player 2’s action 212
labels. The model must infer Player 2’s policy, 213

π(2)(a
(2)
t | st, a(1)t ), 214

as an emergent property of generating temporally consis- 215
tent and plausible multi-agent interactions. This forces the 216
world model to learn reactive and strategic opponent behav- 217
ior implicitly. 218
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(a) Training overview of COMBAT World Model.
(b) Every 4th DiT block has a global attention
layer to capture long form context.

Figure 2. Architectural diagram of the COMBAT model. (a) The end-to-end training process, where a Diffusion Transformer is conditioned
on action and timestep embeddings to denoise latent frame representations. (b) The internal structure of the DiT backbone, which employs
a hybrid local-global attention pattern to efficiently model long-term dependencies.

3.2. Tekken 3 Gameplay Dataset219

To train our model, we collected a large-scale dataset of220
Tekken 3 gameplay, totaling 1,000 rounds (approximately221
7 hours or 1.2 million frames). The data features a vari-222
ety of characters and a balanced win–loss ratio between the223
two players. For each frame, captured at a resolution of224
3×448×736, we provide synchronized annotations, includ-225
ing: action inputs for both players, health and timer status,226
68-point body pose coordinates, and player segmentation227
masks. Our data collection and annotation pipeline will be228
made publicly available.229

3.3. Model Architecture230

Our world model architecture integrates three main compo-231
nents:232
• (1) a multi-modal variational autoencoder for high-ratio233

state compression,234
• (2) an embedding module for player actions and diffusion235

timesteps, and236
• (3) a Diffusion Transformer (DiT) backbone for autore-237

gressive prediction in the latent space.238
We train two versions of the model: one using only RGB239

latents and another using a joint visual–pose latent repre-240
sentation.241

3.3.1. Multi-Modal Latent Encoding242

To create an efficient latent representation, we first train a243
340M-parameter joint RGB–pose variational autoencoder.244
This model learns a shared embedding space by compress-245
ing concatenated visual frames (3×448×736) and pose key-246
points into a compact latent tensor of shape 128× 23× 11.247

Our design is inspired by recent work in high-compression 248
autoencoders for diffusion models [7]. To optimize for real- 249
time performance, the 340M-parameter decoder is subse- 250
quently distilled to a 44M-parameter version by reducing its 251
upsampling block count, which maintains high reconstruc- 252
tion quality at a fraction of the computational cost. 253

Player 1’s action history, encoded as a multi-hot vector 254
over 8 buttons, is projected into a dense embedding. This 255
action embedding is summed with a sinusoidal time em- 256
bedding for the current diffusion step, temb, to form the final 257
conditioning vector for the DiT backbone. 258

3.3.2. Diffusion Transformer Backbone 259

The core of our generative model is a 1.2B-parameter Dif- 260
fusion Transformer (DiT) [18], which learns to denoise and 261
predict future latent frames. The architecture consists of 16 262
transformer blocks with a model dimension dmodel = 2048 263
and 16 attention heads. The conditioning vector is injected 264
into each block via an Adaptive Layer Normalization Zero 265
(AdaLNZero) layer, and tokenization is performed using 266
linear projection layers for spatio-temporal rasterization, 267
bypassing conventional patch-based embeddings. 268

Each DiT block executes the following sequence: 269

AdaLN → Attention → Gated Residual → 270

AdaLN → MLP → Gated Residual 271

To maintain computational tractability over long 128- 272
frame sequences, we employ a hybrid attention strategy. 273
Most layers use a frame-causal attention mask with a local 274
sliding window of 16 frames, while every fourth layer ap- 275
plies global attention across the entire 128-frame context. 276
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This structure balances long-range dependency modeling277
with computational efficiency. We apply Rotary Position278
Embeddings (RoPE) [21] across both spatial and temporal279
axes and utilize FlexAttention for an efficient block-sparse280
masking implementation.281

3.4. Accelerated Inference for Real-Time Genera-282
tion283

Enabling real-time interaction is critical for gaming applica-284
tions, but the iterative sampling process of diffusion models285
is computationally intensive. To overcome this, we signifi-286
cantly accelerate inference using two key optimizations.287

First, we distill the fully trained model into a few-288
step sampler using Distribution Matching Distillation289
(DMD) [26, 27]. Specifically, we adopt the CausVid DMD290
framework [28] to produce a 4-step distilled model that pre-291
serves high generative fidelity while drastically reducing in-292
ference time.293

Second, we further enhance speed by implementing294
static key-value caching, which reuses previously computed295
attention states across generation steps. These optimiza-296
tions are applied to both the RGB and visual–pose world297
models.298

4. Experiments299

To validate our claim that a conditional world model can300
learn reactive agent behavior from partial observations, we301
conduct a series of experiments on the Tekken 3 dataset.302
We first detail our multi-stage training pipeline and model303
architectures. We then introduce our evaluation benchmarks304
and present results comparing our primary models and their305
distilled variants.306

4.1. Implementation Details307

Our training process is divided into three main stages: au-308
toencoder training, world model training, and distillation309
for real-time inference. All models were trained on a cluster310
of 8× NVIDIA H200 GPUs.311

Stage 1: Autoencoder Training. We first train a312
340M parameter Deep Compression AutoEncoder (DCAE)313
to learn a compact latent representation of the game envi-314
ronment. The autoencoder is trained for 68,000 steps (ap-315
prox. 75 hours) on our 1.2 million frame Tekken dataset. It316
compresses raw frames (3× 448× 736) into a latent space317
of 23 × 11 with 128 channels. The training objective is a318
combination of L2 reconstruction loss, perceptual similar-319
ity loss, and a KL divergence term to regularize the latent320
space. For our pose-augmented model, we use an identical321
architecture and training setup.322

Stage 2: World Model Training. We train a 1.2B323
parameter autoregressive Diffusion Transformer (DiT) to324
function as the world model. The DiT architecture consists325
of 16 layers, 16 attention heads, and a model dimension326

of dmodel = 2048. It employs a combination of local (16 327
frames) and global (128 frames) attention windows to cap- 328
ture both short-term and long-term temporal dependencies. 329
The model is trained on video clips with a sequence length 330
of 128 frames to predict the next latent frame conditioned 331
on Player 1’s actions. We train two distinct world models: 332
one using latents from the RGB-only VAE and another us- 333
ing latents from the pose-augmented VAE. 334

Stage 3: Distillation for Real-Time Inference. To 335
achieve interactive frame rates, we employ two separate dis- 336
tillation techniques: 337
• Decoder Distillation: We first create a lightweight VAE 338

decoder for real-time rendering. Using student-teacher 339
distillation, we reduce the number of upsampling blocks 340
per stage in the decoder from four to one. This process, 341
which took 14 hours over 50k steps, reduces the decoder’s 342
parameter count from 340M to a nimble 44M. 343

• Step Distillation: We use CausVid, a Distribution Match- 344
ing Distillation (DMD) method, to drastically reduce the 345
number of required inference steps for the world model. 346
We distill the fully-trained DiT into a 4-step variant. This 347
distillation process converges in 2,500 steps, utilizing a 348
combination of a DMD loss and a critic loss. We ap- 349
ply this technique to both the RGB-only and the pose- 350
augmented world models. 351

4.2. Evaluation Metrics and Benchmarks 352

Evaluating emergent agent behavior presents a fundamental 353
challenge: how do we measure intelligence that was never 354
explicitly supervised? Traditional video metrics assess vi- 355
sual fidelity, while RL metrics assume access to ground- 356
truth actions or rewards. Since COMBAT learns behavioral 357
patterns implicitly through world modeling, we need novel 358
evaluation approaches that can detect tactical competence 359
from generated gameplay alone. 360

4.2.1. Standard Perceptual Metrics 361

To assess the perceptual quality of our generated trajec- 362
tories, we employ a suite of standard metrics. Our eval- 363
uation protocol involves conditioning the models on real 364
Player 1 action sequences extracted from a test set of 300 365
ground-truth videos(1-2 seconds) consisting mixed diffi- 366
culty gameplays. The generated video is then compared 367
directly against its corresponding ground-truth counterpart 368
from which the actions were sourced. This setup provides 369
a stringent test of the model’s ability to render determinis- 370
tic outcomes based on specific actions,a significantly more 371
challenging task than unconditional video generation. 372

We report the Fréchet Video Distance (FVD)[22] to mea- 373
sure temporal coherence, the Fréchet Inception Distance 374
(FID)[12] for per-frame visual fidelity, and LPIPS to quan- 375
tify perceptual similarity. Given the high-fidelity nature of 376
the Tekken 3 environment, characterized by rapid motion 377
and complex visual effects, achieving strong performance 378
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on these metrics against the ground truth is a robust indica-379
tor of the model’s precision and world-modeling capabili-380
ties.

Table 1. All metrics are calculated on a held-out test set of 300
video clips each with 32 frames. Lower is better for all scores.

Model FID ↓ FVD ↓ LPIPS ↓
COMBAT: Pose 49.7 593.4 0.05
COMBAT: Non-Pose 80.9 1156.6 0.07

381

(a) Player 1 Damage Distribution (b) Player 2 Damage Distribution

(c) Player 1 Mean Health Trajectory
(d) Player 2 Mean Health Trajec-
tory

Figure 3. Behavioral Consistency Metrics. A comparison of
generated gameplay (COMBAT) against the ground truth. (a, b)
The per-frame damage distributions for Player 1 and Player 2,
showing that our model learns a realistic mapping of actions to
consequences. (c, d) The mean health trajectories over the course
of a round, indicating that COMBAT captures the natural pacing
of a match.

4.2.2. Behavioral Consistency Metrics382

To verify that our model learns the game’s intrinsic rules383
and pacing, we propose two metrics based on in-game384
health data:385

• Damage Distribution Analysis: This metric assesses386
whether the consequence of individual actions is realis-387

tic. Let H
(t)
i denote the health of player i ∈ {1, 2}388

at frame t, and define per-frame damage as ∆H
(t)
i =389

max(0, H
(t−1)
i −H

(t)
i ). We normalize by the maximum390

health Hmax
i to obtain δ

(t)
i = ∆H

(t)
i /Hmax

i .391
The complete distribution of damage values from all gen-392

erated sequences, {δ(t)i,gen}, is then compared to the dis-393

tribution from all ground-truth sequences, {δ(t)i,real}, using394
the Wasserstein distance. A lower distance signifies that395
the model has learned a more accurate mapping from ac-396
tions to their in-game consequences.397

• Health Trajectory Analysis: This metric evaluates the 398
overall temporal flow of the match. Define the normalized 399
time s = t/T , where T is the total round duration, and 400

let H̄(s) = 1
2

∑
i H

(t)
i /Hmax

i be the average normalized 401
health at time s for a single round. 402
To establish a baseline for typical match progression, we 403
compute the mean health trajectory by averaging H̄(s) 404
across all rounds in our ground-truth test set. We do the 405
same for our generated rounds. The similarity between 406
these two mean trajectories is then measured using the 407
Mean Squared Error (MSE). A lower MSE indicates that 408
the generated gameplay, on average, exhibits a more real- 409
istic match pace. 410

4.3. Human Evaluation of Emergent Behavior 411

To assess the emergent behavior of Player 2, we conduct 412
human evaluation based on observable action patterns in 413
gameplay. Since Player 2 is trained without explicit super- 414
vision, emergent behavior is defined as actions that react 415
naturally to Player 1’s inputs, demonstrating plausible com- 416
bat strategies such as timely punches, kicks, and defensive 417
maneuvers. 418

We introduce two human-interpretable metrics: Total 419
Action Adherence (TAA) and Action Ratio Consistency 420
(ARC). These metrics are based on human annotations of 421
offensive actions observed in both ground-truth and gener- 422
ated gameplay sequences. 423

4.3.1. Total Action Adherence (TAA) 424

TAA measures whether the agent produces a comparable 425
overall volume of offensive actions relative to human game- 426
play: 427

TAA =
Gkicks +Gpunch

Okicks +Opunch
428

where G· denotes actions performed by the generated 429
agent, and O· the actions performed in original gameplay. 430

A score of 1.0 indicates perfect adherence in activity 431
level. Scores > 1.0 suggest hyperactive behavior, while 432
scores < 1.0 indicate passive behavior. 433

Figure 4. Total Action Adherence across training checkpoints
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4.3.2. Action Ratio Consistency (ARC)434

ARC evaluates whether the stylistic balance between435
punches and kicks aligns with the human player:436

ARC =

Gpunch

Gkicks

Opunch

Okicks

437

A score of 1.0 indicates identical punch-to-kick ratio as438
original gameplay. Scores above 1.0 reflect stronger pref-439
erence for punches, while scores below 1.0 suggest heavier440
reliance on kicks.441

Figure 5. Action Ratio Consistency across training checkpoints

4.3.3. Results442

We evaluated sequences at multiple training checkpoints.443
Table 2 summarizes the results:444

Training Step TAA ARC

Ground Truth 1.00 1.00
Step 500 3.87 1.04
Step 1000 0.88 3.90
Step 1500 1.90 1.79
Step 2000 1.79 1.47

Table 2. TAA and ARC scores at different training checkpoints
compared against human gameplay.

Our evaluation shows that COMBAT successfully learns445
emergent Player 2 behavior through distinct phases. Ini-446
tially, the model is hyperactive, generating nearly four447
times the offensive actions of human players (TAA = 3.87),448
though its punch-to-kick ratio is well-aligned (ARC = 1.04).449
As training progresses, the model reduces hyperactivity in450
further steps. Beyond step 2000, performance declines,451
with later checkpoints showing reduced adherence to origi-452
nal gameplay.453

By the final training stages, the model converges toward454
stable, human-like combat patterns. It learns to regulate ac-455
tivity frequency (TAA 1.8) while achieving balanced fight-456
ing style (ARC 1.5). However, overall consistency de-457
grades noticeably. This progression from erratic behavior458
to stable patterns demonstrates that complex, emergent be-459
haviors can be learned without explicit supervision.460

The pose-augmented COMBAT model significantly out- 461
performs the RGB-only variant across visual quality met- 462
rics, confirming that explicit pose information improves 463
generation quality. 464

Impact of Distillation: Our 4-step distilled models, cre- 465
ated using CausVid DMD, retain substantial visual qual- 466
ity while achieving 12.5× speedup. The pose-augmented 467
4-step model still outperforms the full RGB-only model, 468
demonstrating efficient distillation with minimal quality 469
trade-off. 470

Qualitatively, we observe intelligent behaviors includ- 471
ing combo execution, spatial awareness, and adaptation to 472
Player 1’s patterns. These tactical responses emerge natu- 473
rally from our training process without explicit behavioral 474
supervision. 475

5. Conclusion 476

In this work, we introduce COMBAT, a conditional world 477
model that learns complex, emergent agent behavior from 478
partially observed gameplay. Our key finding is that by con- 479
ditioning the model solely on Player 1’s actions, it success- 480
fully learns a reactive, tactically coherent policy for Player 481
2 without any direct supervision. The model correctly asso- 482
ciates the control inputs with the intended agent and gener- 483
ates plausible counter-attacks, demonstrating that intricate 484
behaviors can arise implicitly from the objective of tempo- 485
ral consistency. 486

To foster further research in this domain, we provide 487
an extensive analysis of emergent behavior in world mod- 488
els. We will also release our large-scale Tekken 3 dataset, 489
complete with synchronized pose and segmentation anno- 490
tations, and open-source our pipelines for data collection 491
and model training. 492

Crucially, our approach is practical for interactive appli- 493
cations. Through distillation, the COMBAT world model 494
achieves real-time performance, operating at 85 FPS on 495
a single NVIDIA A100 GPU. This work represents a first 496
step in exploring how generative world models can learn 497
implicit agent policies, and we hope it inspires further re- 498
search into multi-agent behavioral modeling in complex, in- 499
teractive environments. 500
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